115TH CONGRESS
2D Session

S. ______

To direct the Secretary of Energy to establish advanced nuclear goals, provide for a versatile, reactor-based fast neutron source, make available high-assay, low-enriched uranium for research, development, and demonstration of advanced nuclear reactor concepts, and for other purposes.

IN THE SENATE OF THE UNITED STATES

Ms. Murkowski (for herself, Mr. Booker, Mr. Risch, Mr. Crapo, Mrs. Capito, Mr. Durbin, Mr. Whitehouse, Mr. Manchin, and Mr. Coons) introduced the following bill; which was read twice and referred to the Committee on

A BILL

To direct the Secretary of Energy to establish advanced nuclear goals, provide for a versatile, reactor-based fast neutron source, make available high-assay, low-enriched uranium for research, development, and demonstration of advanced nuclear reactor concepts, and for other purposes.

Be it enacted by the Senate and House of Representa-
tives of the United States of America in Congress assembled,

SECTION 1. SHORT TITLE.

This Act may be cited as the “Nuclear Energy Lead-
ership Act”.

1
2
3
4
5
SEC. 2. AUTHORIZATION OF LONG-TERM POWER PURCHASE AGREEMENTS.

Section 501(b)(1) of title 40, United States Code, is amended by striking subparagraph (B) and inserting the following:

“(B) PUBLIC UTILITY CONTRACTS.—

“(i) TERM.—

“(I) IN GENERAL.—A contract under this paragraph to purchase electricity from a public utility may be for a period of not more than 40 years.

“(II) OTHER PUBLIC UTILITY SERVICES.—A contract under this paragraph for a public utility service other than a service described in subclause (I) may be for a period of not more than 10 years.

“(ii) COSTS.—The cost of a contract under this paragraph for any fiscal year may be paid from the appropriations for that fiscal year.”.
SEC. 3. LONG-TERM NUCLEAR POWER PURCHASE AGREEMENT PILOT PROGRAM.

(a) IN GENERAL.—Subtitle B of title VI of the Energy Policy Act of 2005 (Public Law 109–58; 119 Stat. 782) is amended by adding at the end the following:

"SEC. 640. LONG-TERM NUCLEAR POWER PURCHASE AGREEMENT PILOT PROGRAM.

"(a) ESTABLISHMENT.—The Secretary shall establish a pilot program for a long-term power purchase agreement.

"(b) REQUIREMENTS.—In developing the pilot program under this section, the Secretary shall—

"(1) consult and coordinate with the heads of other Federal departments and agencies that may benefit from purchasing nuclear power for a period of longer than 10 years, including—

"(A) the Secretary of Defense; and

"(B) the Secretary of Homeland Security; and

"(2) not later than December 31, 2023, enter into at least 1 agreement to purchase power from a commercial nuclear reactor.

"(c) FACTORS FOR CONSIDERATION.—

"(1) IN GENERAL.—In carrying out this section, the Secretary shall give special consideration to power purchase agreements for first-of-a-kind or
early deployment nuclear technologies that can provide reliable and resilient power to high-value assets for national security purposes or other purposes as the Secretary determines to be in the national interest, especially in remote off-grid scenarios or grid-connected scenarios that can provide capabilities commonly known as ‘islanding power capabilities’ during an emergency scenario.

“(2) Effect on rates.—An agreement to purchase power under this section may be at a rate that is higher than the average market rate, if the agreement fulfills an applicable consideration described in paragraph (1).”.

(b) Table of Contents.—The table of contents of the Energy Policy Act of 2005 (Public Law 109–58; 119 Stat. 594) is amended by inserting after the item relating to section 639 the following:

“Sec. 640. Long-term nuclear power purchase agreement pilot program.”.

SEC. 4. ADVANCED NUCLEAR REACTOR RESEARCH AND DEVELOPMENT GOALS.

(a) In General.—Subtitle E of title IX of the Energy Policy Act of 2005 (42 U.S.C. 16271 et seq.) is amended by adding at the end the following:

“SEC. 958. ADVANCED NUCLEAR REACTOR RESEARCH AND DEVELOPMENT GOALS.

“(a) Definitions.—In this section:
“(1) ADVANCED NUCLEAR REACTOR.—The term ‘advanced nuclear reactor’ means—

“(A) a nuclear fission reactor, including a prototype plant (as defined in sections 50.2 and 52.1 of title 10, Code of Federal Regulations (or successor regulations)), with significant improvements compared to the most recent generation of fission reactors, including improvements such as—

“(i) additional inherent safety features;

“(ii) lower waste yields;

“(iii) improved fuel performance;

“(iv) increased tolerance to loss of fuel cooling;

“(v) enhanced reliability;

“(vi) increased proliferation resistance;

“(vii) increased thermal efficiency;

“(viii) reduced consumption of cooling water;

“(ix) the ability to integrate into electric applications and nonelectric applications;
“(x) modular sizes to allow for deployment that corresponds with the demand for electricity; or

“(xi) operational flexibility to respond to changes in demand for electricity and to complement integration with intermittent renewable energy; and

“(B) a fusion reactor.

“(2) DEMONSTRATION PROJECT.—The term ‘demonstration project’ means an advanced nuclear reactor operated—

“(A) as part of the power generation facilities of an electric utility system; or

“(B) in any other manner for the purpose of demonstrating the suitability for commercial application of the advanced nuclear reactor.

“(b) PURPOSE.—The purpose of this section is to direct the Secretary, as soon as practicable after the date of enactment of this section, to advance the research and development of domestic advanced, affordable, and clean nuclear energy by—

“(1) demonstrating different advanced nuclear reactor technologies that could be used by the private sector to produce—
“(A) emission-free power at a levelized cost of electricity of $60 per megawatt-hour or less;

“(B) heat for community heating, industrial purposes, or synthetic fuel production;

“(C) remote or off-grid energy supply; or

“(D) backup or mission-critical power supplies;

“(2) developing goals for nuclear energy research programs that would accomplish the goals of the demonstration projects carried out under subsection (c);

“(3) identifying research areas that the private sector is unable or unwilling to undertake due to the cost of, or risks associated with, the research; and

“(4) facilitating the access of the private sector—

“(A) to Federal research facilities; and

“(B) to the results of research funded by the Federal Government.

“(c) DEMONSTRATION PROJECTS.—

“(1) IN GENERAL.—During the period beginning on the date of enactment of this section and ending on September 30, 2028, the Secretary shall, to the maximum extent practicable, enter into 1 or
more agreements to carry out not fewer than 4 ad-
vanced nuclear reactor demonstration projects.

“(2) REQUIREMENTS.—In carrying out dem-
onstration projects under paragraph (1), the Sec-
retary shall—

“(A) seek to include diversity in designs
for the advanced nuclear reactors demonstrated
under this section, including designs using var-
ious primary coolants;

“(B) seek to ensure that—

“(i) the long-term cost of electricity or
heat for each design to be demonstrated
under this subsection is cost-competitive in
the applicable market; and

“(ii) the cost-competitiveness of each
design to be demonstrated under this sub-
section is verified by an external review of
the proposed design;

“(C) enter into cost-sharing agreements
with partners in accordance with section 988
for the conduct of activities relating to the re-
search, development, and demonstration of pri-
ivate-sector advanced nuclear reactor designs
under the program;
“(D) work with private sector partners to identify potential sites, including Department-owned sites, for demonstrations, as appropriate; and

“(E) align specific activities carried out under demonstration projects carried out under this subsection with priorities identified through direct consultations between—

“(i) the Department;

“(ii) National Laboratories;

“(iii) institutions of higher education (as defined in section 101(a) of the Higher Education Act of 1965 (20 U.S.C. 1001(a)));

“(iv) traditional end-users (such as electric utilities);

“(v) potential end-users of new technologies (such as petrochemical companies); and

“(vi) developers of advanced nuclear reactor technology.

“(d) GOALS.—

“(1) IN GENERAL.—The Secretary shall establish goals for research relating to advanced nuclear reactors facilitated by the Department that support
the objectives of the program for demonstration
projects established under subsection (e).

“(2) COORDINATION.—In developing the goals
under paragraph (1), the Secretary shall coordinate,
on an ongoing basis, with members of private indus-
try to advance the demonstration of various designs
of advanced nuclear reactors.

“(3) REQUIREMENTS.—In developing the goals
under paragraph (1), the Secretary shall ensure
that—

“(A) research activities facilitated by the
Department to meet the goals developed under
this subsection are focused on key areas of nu-
clear research and deployment ranging from
basic energy to full-design development, safety
evaluation, and licensing;

“(B) research programs designed to meet
the goals emphasize—

“(i) resolving materials challenges re-
lating to radiation damage or corrosive
coolants; and

“(ii) qualification of advanced fuels;

“(C) activities are carried out that address
near-term challenges in modeling and simula-
tion to enable accelerated design and licensing;
“(D) related technologies, such as electrochemical processing or fuel recycling that could reduce nuclear waste volumes or half lives, are developed;

“(E) infrastructure, such as a versatile fast neutron source or molten salt testing facility, to aid in research are constructed;

“(F) basic knowledge of non-light water coolant physics and chemistry is improved; and

“(G) advanced manufacturing and construction techniques and materials are investigated to reduce the commercialization cost of advanced nuclear reactors.”.

(b) TABLE OF CONTENTS.—The table of contents of the Energy Policy Act of 2005 (Public Law 109–58; 119 Stat. 594) is amended—

(1) in the item relating to section 917, by striking “Efficiency”; and

(2) by inserting after the item relating to section 957 the following:

“Sec. 958. Advanced nuclear reactor research and development goals.”.

SEC. 5. NUCLEAR ENERGY STRATEGIC PLAN.

(a) IN GENERAL.—Subtitle E of title IX of the Energy Policy Act of 2005 (42 U.S.C. 16271 et seq.) (as amended by section 4(a)) is amended by adding at the end the following:
SEC. 958A. NUCLEAR ENERGY STRATEGIC PLAN.

(a) In General.—Not later than 180 days after the date of enactment of this section, the Secretary shall submit to the Committee on Energy and Natural Resources of the Senate and the Committees on Energy and Commerce and Science, Space, and Technology of the House of Representatives a 10-year strategic plan for the Office of Nuclear Energy of the Department, in accordance with this section.

(b) Requirements.—

(1) Components.—The strategic plan under this section shall designate—

(A) programs that support the planned accomplishment of the goals established under section 958(d); and

(B) programs that—

(i) do not support the planned accomplishment of the goals referred to in subparagraph (A); but

(ii) are important to the mission of the Office of Nuclear Energy, as determined by the Secretary.

(2) Program Planning.—In developing the strategic plan under this section, the Secretary shall specify expected timelines for, as applicable—
“(A) the accomplishment of relevant objectives under current programs of the Department; or

“(B) the commencement of new programs to accomplish those objectives.

“(c) UPDATES.—Not less frequently than once every 2 years, the Secretary shall submit to the Committee on Energy and Natural Resources of the Senate and the Committees on Energy and Commerce and Science, Space, and Technology of the House of Representatives an updated 10-year strategic plan in accordance with subsection (b), which shall identify, and provide a justification for, any major deviation from a previous strategic plan submitted under this section.”.

(b) TABLE OF CONTENTS.—The table of contents of the Energy Policy Act of 2005 (Public Law 109–58; 119 Stat. 594) (as amended by section 4(b)(2)) is amended by inserting after the item relating to section 958 the following:

“Sec. 958A. Nuclear energy strategic plan.”.

SEC. 6. VERSATILE, REACTOR-BASED FAST NEUTRON SOURCE.

(a) IN GENERAL.—Subtitle E of title IX of the Energy Policy Act of 2005 (42 U.S.C. 16271 et seq.) (as amended by section 5(a)) is amended by adding at the end the following:
“SEC. 959. VERSATILE, REACTOR-BASED FAST NEUTRON SOURCE.

“(a) Definition of Fast Neutron.—In this section, the term ‘fast neutron’ means a neutron with kinetic energy above 100 kiloelectron volts.

“(b) Requirement.—The Secretary shall provide for a versatile, reactor-based fast neutron source, which shall operate as a national user facility.

“(c) Consultations Required.—In carrying out subsection (b), the Secretary shall consult with the private sector, institutions of higher education (as defined in section 101(a) of the Higher Education Act of 1965 (20 U.S.C. 1001(a))), the National Laboratories, and relevant Federal agencies to ensure that the neutron source established under subsection (b) is capable of meeting Federal research needs for neutron irradiation services.

“(d) Facility Capabilities.—

“(1) Capabilities.—The Secretary shall ensure that the user facility described in subsection (b) will provide, at a minimum—

“(A) fast neutron spectrum irradiation capability; and

“(B) the capacity for upgrades to accommodate new or expanded research needs.

“(2) Considerations.—In carrying out paragraph (1), the Secretary shall consider—
“(A) capabilities that support experimental high-temperature testing;

“(B) providing a source of fast neutrons—

“(i) at a neutron flux higher than that at which existing research facilities operate; and

“(ii) sufficient to enable research for an optimal base of prospective users;

“(C) maximizing irradiation flexibility and irradiation volume to accommodate as many concurrent users as practicable;

“(D) capabilities for irradiation with neutrons of a lower energy spectrum;

“(E) multiple loops for fuels and materials testing of different coolants;

“(F) additional pre- and post-irradiation examination capabilities; and

“(G) lifetime operating costs and lifecycle costs.

“(e) DEADLINE FOR COMMENCEMENT OF OPERATIONS.—To the maximum extent practicable, the Secretary shall ensure that full operations at the user facility under subsection (b) commence before December 31, 2025.
“(f) FUNDING.—Of the funds appropriated to the Office of Nuclear Energy of the Department, the Secretary shall use such sums as are necessary to carry out this section.”.

(b) TABLE OF CONTENTS.—The table of contents of the Energy Policy Act of 2005 (Public Law 109–58; 119 Stat. 594) (as amended by section 5(b)) is amended by inserting after the item relating to section 958A the following:

“Sec. 959. Versatile, reactor-based fast neutron source.”.

SEC. 7. ADVANCED NUCLEAR FUEL SECURITY PROGRAM.

(a) FINDINGS.—Congress finds that—

(1) the national security nuclear enterprise, which supports the nuclear weapons stockpile stewardship and naval reactors functions of the National Nuclear Security Administration, requires a domestic fuel cycle, including uranium mining, uranium processing, uranium enrichment, and fuel fabrication, capable of producing low- and high-enriched uranium;

(2) many domestic advanced nuclear power industry participants require access to high-assay, low-enriched uranium fuel for—

(A) initial fuel testing;

(B) operation of demonstration reactors; and
(C) commercial operation of advanced nuclear reactors;

(3) as of the date of enactment of this Act, no domestic uranium enrichment or fuel fabrication capability exists for uranium fuel enriched to greater than 5 weight percent of the uranium-235 isotope;

(4) a healthy commercial nuclear fuel cycle capable of providing higher levels of enriched uranium would benefit—

(A) the relevant national security functions of the National Nuclear Security Administration; and

(B) the domestic advanced nuclear industry of the United States; and

(5) making limited quantities of high-assay, low-enriched uranium available from Department of Energy stockpiles of uranium would allow for initial fuel testing and demonstration of advanced nuclear reactor concepts, accelerating—

(A) the path to market of those concepts; and

(B) the development of—

(i) a market for advanced nuclear reactors; and
(ii) a resulting growing commercial nuclear fuel cycle capability.

(b) Amendment.—

(1) In general.—Subtitle E of title IX of the Energy Policy Act of 2005 (42 U.S.C. 16271 et seq.) (as amended by section 6(a)) is amended by adding at the end the following:

"SEC. 960. ADVANCED NUCLEAR FUEL SECURITY PROGRAM.

"(a) Definitions.—In this section:

"(1) High-assay, low-enriched uranium.—The term ‘high-assay, low-enriched uranium’ means uranium with an assay greater than 5 weight percent, but less than 20 weight percent, of the uranium-235 isotope.

"(2) High-enriched uranium.—The term ‘high-enriched uranium’ means uranium with an assay of 20 weight percent or more of the uranium-235 isotope.

"(b) High-assay low enriched uranium program for advanced reactors.—

"(1) Establishment.—Not later than 1 year after the date of enactment of this section, the Secretary shall establish a program to make available high-assay, low-enriched uranium, through contracts
for sale, resale, transfer, or lease, for use in commercial or noncommercial advanced nuclear reactors.

“(2) NUCLEAR FUEL OWNERSHIP.—Each lease under this subsection shall include a provision establishing that the nuclear fuel that is the subject of the lease shall remain the property of the Department, including with respect to responsibility for the final disposition of all radioactive waste created by the irradiation, processing, or purification of any leased uranium.

“(3) QUANTITY.—In carrying out the program under this subsection, the Secretary shall make available—

“(A) by December 31, 2022, high-assay, low-enriched uranium containing not less than 2 metric tons of the uranium-235 isotope; and

“(B) by December 31, 2025, high-assay, low-enriched uranium containing not less than 10 metric tons of the uranium-235 isotope (as determined including the quantities of the uranium-235 isotope made available before December 31, 2022).

“(4) FACTORS FOR CONSIDERATION.—In carrying out the program under this subsection, the Secretary shall take into consideration options for
providing the high-assay, low-enriched uranium under this subsection from a stockpile of uranium owned by the Department (including the National Nuclear Security Administration), including—

“(A) fuel that—

“(i) directly meets the needs of an end-user; but

“(ii) has been previously used or fabricated for another purpose;

“(B) fuel that can meet the needs of an end-user after removing radioactive or other contaminants that resulted from a previous use or fabrication of the fuel for research, development, demonstration, or deployment activities of the Department (including activities of the National Nuclear Security Administration); and

“(C) fuel from a high-enriched uranium stockpile, which can be blended with lower-assay uranium to become high-assay, low-enriched uranium to meet the needs of an end-user.

“(5) LIMITATION.—The Secretary shall not barter or otherwise sell or transfer uranium in any form in exchange for services relating to the final...
disposition of radioactive waste from uranium that is
the subject of a lease under this subsection.

“(6) SUNSET.—The program under this sub-
section shall terminate on the earlier of—

“(A) January 1, 2035; and

“(B) the date on which uranium enriched
up to, but not equal to, 20 weight percent can
be obtained in the commercial market from do-
mestic suppliers.

“(c) REPORT.—

“(1) IN GENERAL.—Not later than 180 days
after the date of enactment of this section, the Sec-
retary shall submit to the appropriate committees of
Congress a report that describes actions proposed to
be carried out by the Secretary—

“(A) under the program under subsection
(b); or

“(B) otherwise to enable the commercial
use of high-assay, low-enriched uranium.

“(2) COORDINATION AND STAKEHOLDER
INPUT.—In developing the report under this sub-
section, the Secretary shall seek input from—

“(A) the Nuclear Regulatory Commission;

“(B) the National Laboratories;
“(C) institutions of higher education (as defined in section 101(a) of the Higher Education Act of 1965 (20 U.S.C. 1001(a)));

“(D) a diverse group of entities operating in the nuclear energy industry; and

“(E) a diverse group of technology developers.

“(3) Cost and Schedule Estimates.—The report under this subsection shall include estimated costs, budgets, and timeframes for enabling the use of high-assay, low-enriched uranium.

“(4) Required Evaluations.—The report under this subsection shall evaluate—

“(A) the costs and actions required to establish and carry out the program under subsection (b), including with respect to—

“(i) proposed preliminary terms for the sale, resale, transfer, and leasing of high-assay low-enriched uranium (including guidelines defining the roles and responsibilities between the Department and the purchaser, transfer recipient, or lessee); and
“(ii) the potential to coordinate with purchasers, transfer recipients, and lessees regarding—

“(I) fuel fabrication; and

“(II) fuel transport;

“(B) the potential sources and fuel forms available to provide uranium for the program under subsection (b);

“(C) options to coordinate the program under subsection (b) with the operation of the versatile, reactor-based fast neutron source under section 959;

“(D) the ability of the domestic uranium market to provide materials for advanced nuclear reactor fuel; and

“(E) any associated legal, regulatory, and policy issues that should be addressed to enable—

“(i) the program under subsection (b);

and

“(ii) the establishment of a domestic industry capable of providing high-assay, low-enriched uranium for commercial and noncommercial purposes, including with respect to the needs of—
“(I) the Department;

“(II) the Department of Defense;

and

“(III) the National Nuclear Security Administration.”.

(2) TABLE OF CONTENTS.—The table of contents of the Energy Policy Act of 2005 (Public Law 109–58; 119 Stat. 594) (as amended by section 6(b)) is amended by inserting after the item relating to section 959 the following:

“Sec. 960. Advanced nuclear fuel security program.”.

SEC. 8. UNIVERSITY NUCLEAR LEADERSHIP PROGRAM.

(a) FINDINGS.—Congress finds that—

(1) nuclear power plants—

(A) generate billions of dollars in national economic activity through procurements throughout the United States; and

(B) provide tens of thousands of people in the United States with high-paying jobs, contributing substantially to the local economies of the communities in which the plants operate;

(2) the world market for the growth of commercial nuclear power was estimated by the Department of Commerce to be valued at up to $740,000,000,000 during the period of calendar years 2018 through 2028;
(3) the participation and leadership of the
United States in the market described in paragraph
(2) will—

(A)(i) increase economic activity in the
United States through robust nuclear exports,
leading to the enhanced economic security of
the United States; and

(ii) preserve and enhance the ability of the
United States to positively influence inter-
national nuclear safety, security, and non-
proliferation standards through commercial en-
gagement with other nations; but

(B) require significant investment in
United States-origin advanced nuclear tech-
nologies;

(4) in order to lead the world in the next gen-
eration of commercial nuclear power, the advanced
nuclear industry in the United States should be posi-
tioned for accelerated growth, which requires public-
private partnerships with—

(A) the Department of Energy;

(B) the National Nuclear Security Admin-
istration; and

(C) the Nuclear Regulatory Commission;
(5) advanced reactors represent new challenges in reactor design, safeguards, and regulation;

(6) the challenges referred to in paragraph (5)—

(A) are directly relevant to the missions of—

(i) the Office of Nuclear Energy of the Department of Energy;

(ii) the National Nuclear Security Administration; and

(iii) the Nuclear Regulatory Commission; and

(B) require a highly skilled workforce in order to be met; and

(7) nuclear science and engineering programs at institutions of higher education in the United States—

(A) annually award degrees in nuclear engineering and related fields to more than 600 undergraduate students, and 500 graduate students, who are critical to maintaining United States leadership in the development of advanced nuclear systems;

(B) perform cutting-edge research and technology development activities that have
made fundamental contributions to advancing
United States nuclear technology;

(C) support workforce development critical
to maintaining United States leadership in nu-
clear detection, nonproliferation, nuclear medi-
cine, advanced manufacturing, and other non-
energy areas; and

(D) generally do not receive support from
Federal science agencies other than the Depart-
ment of Energy.

(b) AMENDMENT.—Section 313 of the Energy and
Water Development and Related Agencies Appropriations
Act, 2009 (42 U.S.C. 16274a), is amended to read as fol-
lows:

"SEC. 313. UNIVERSITY NUCLEAR LEADERSHIP PROGRAM.

"(a) DEFINITIONS.—In this section:

"(1) ADVANCED NUCLEAR REACTOR.—The
term ‘advanced nuclear reactor’ means—

"(A) a nuclear fission reactor, including a
prototype plant (as defined in sections 50.2 and
52.1 of title 10, Code of Federal Regulations
(or successor regulations)), with significant im-
provements compared to the most recent gen-
eration of fission reactors, including improve-
ments such as—
“(i) additional inherent safety features;

“(ii) lower waste yields;

“(iii) improved fuel performance;

“(iv) increased tolerance to loss of fuel cooling;

“(v) enhanced reliability;

“(vi) increased proliferation resistance;

“(vii) increased thermal efficiency;

“(viii) reduced consumption of cooling water;

“(ix) the ability to integrate into electric applications and nonelectric applications;

“(x) modular sizes to allow for deployment that corresponds with the demand for electricity; or

“(xi) operational flexibility to respond to changes in demand for electricity and to complement integration with intermittent renewable energy; and

“(B) a fusion reactor.

“(2) INSTITUTION OF HIGHER EDUCATION.—

The term ‘institution of higher education’ has the
meaning given the term in section 101(a) of the
Higher Education Act of 1965 (20 U.S.C. 1001(a)).

“(3) PROGRAM.—The term ‘Program’ means
the University Nuclear Leadership Program estab-
lished under subsection (b).

“(b) ESTABLISHMENT.—The Secretary of Energy,
the Administrator of the National Nuclear Security Ad-
ministration, and the Chairman of the Nuclear Regulatory
Commission shall jointly establish a program, to be known
as the ‘University Nuclear Leadership Program’.

“(c) USE OF FUNDS.—

“(1) IN GENERAL.—Except as provided in para-
grah (2), amounts made available to carry out the
Program shall be used to provide financial assistance
for scholarships, fellowships, and research and devel-
opment projects at institutions of higher education
in areas relevant to the programmatic mission of the
applicable Federal agency providing the financial as-
"
a scholarship, fellowship, or multiyear research and
development project that does not align directly with
a programmatic mission of the applicable Federal
agency providing the financial assistance, if the ac-
tivity for which assistance is provided would facili-
tate the maintenance of the discipline of nuclear
science or nuclear engineering.

“(d) AUTHORIZATION OF APPROPRIATIONS.—There
are authorized to be appropriated such sums as are nec-
essary to carry out the Program.”.